Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type

نویسندگان

چکیده

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b>0 $\end{document}</tex-math></inline-formula> is a parameter, id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) and id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on nonlinearity id="M5">\begin{document}$ f which are almost necessary, prove that problem id="M6">\begin{document}$ (\rm P) has nontrivial solution id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) such id="M8">\begin{document}$ \bar{v} G(\bar{u}) ground state of following problem</p><p id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ id="M9">\begin{document}$ G(t): \int_{0}^{t} g(s) ds We also give minimax characterization for id="M10">\begin{document}$ $\end{document}</tex-math></inline-formula>.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXISTENCE OF POSITIVE SOLUTIONS FOR A QUASILINEAR ELLIPTIC SYSTEM OF p–KIRCHHOFF TYPE

In this paper, we consider the existence of positive solutions to the following p Kirchhoff-type system ⎧⎪⎨⎪⎪⎩ −M (∫ Ω |∇u|pdx ) Δpu = g(x)|u|q−2u+ α α+β |u|α−2u|v|β , x ∈Ω, −M (∫ Ω |∇u|pdx ) Δpv = h(x)|v|q−2v+ β α+β |u|α |v|β−2v, x ∈Ω, u = v = 0, x ∈ ∂Ω, where Ω is a bounded domain in RN , M(s) = a + bsk , Δpu = div(|∇u|p−2∇u) is the p Laplacian operator, α > 1 , β > 1 , 1 < p < q < α +β < p∗ ...

متن کامل

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Existence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator

The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.

متن کامل

On the Existence of Solutions of a Nonlocal Elliptic Equation with a p-Kirchhoff-Type Term

Questions on the existence of positive solutions for the following class of elliptic problems are studied: − M ‖u‖p1,p 1,p Δpu f x, u , in Ω, u 0, on ∂Ω, where Ω ⊂ R is a bounded smooth domain, f : Ω ×R → R and M : R → R, R 0,∞ are given functions. Copyright q 2008 F. J. S. A. Corrêa and R. G. Nascimento. This is an open access article distributed under the Creative Commons Attribution License,...

متن کامل

Existence of nontrivial weak solutions for a quasilinear Choquard equation

We are concerned with the following quasilinear Choquard equation: [Formula: see text] where [Formula: see text], [Formula: see text] is the p-Laplacian operator, the potential function [Formula: see text] is continuous and [Formula: see text]. Here, [Formula: see text] is the Riesz potential of order [Formula: see text]. We study the existence of weak solutions for the problem above via the mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2022

ISSN: ['1534-0392', '1553-5258']

DOI: https://doi.org/10.3934/cpaa.2022010