Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type
نویسندگان
چکیده
<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) and id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on nonlinearity id="M5">\begin{document}$ f which are almost necessary, prove that problem id="M6">\begin{document}$ (\rm P) has nontrivial solution id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) such id="M8">\begin{document}$ \bar{v} G(\bar{u}) ground state of following problem</p><p id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ id="M9">\begin{document}$ G(t): \int_{0}^{t} g(s) ds We also give minimax characterization for id="M10">\begin{document}$ $\end{document}</tex-math></inline-formula>.</p>
منابع مشابه
EXISTENCE OF POSITIVE SOLUTIONS FOR A QUASILINEAR ELLIPTIC SYSTEM OF p–KIRCHHOFF TYPE
In this paper, we consider the existence of positive solutions to the following p Kirchhoff-type system ⎧⎪⎨⎪⎪⎩ −M (∫ Ω |∇u|pdx ) Δpu = g(x)|u|q−2u+ α α+β |u|α−2u|v|β , x ∈Ω, −M (∫ Ω |∇u|pdx ) Δpv = h(x)|v|q−2v+ β α+β |u|α |v|β−2v, x ∈Ω, u = v = 0, x ∈ ∂Ω, where Ω is a bounded domain in RN , M(s) = a + bsk , Δpu = div(|∇u|p−2∇u) is the p Laplacian operator, α > 1 , β > 1 , 1 < p < q < α +β < p∗ ...
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملExistence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator
The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.
متن کاملOn the Existence of Solutions of a Nonlocal Elliptic Equation with a p-Kirchhoff-Type Term
Questions on the existence of positive solutions for the following class of elliptic problems are studied: − M ‖u‖p1,p 1,p Δpu f x, u , in Ω, u 0, on ∂Ω, where Ω ⊂ R is a bounded smooth domain, f : Ω ×R → R and M : R → R, R 0,∞ are given functions. Copyright q 2008 F. J. S. A. Corrêa and R. G. Nascimento. This is an open access article distributed under the Creative Commons Attribution License,...
متن کاملExistence of nontrivial weak solutions for a quasilinear Choquard equation
We are concerned with the following quasilinear Choquard equation: [Formula: see text] where [Formula: see text], [Formula: see text] is the p-Laplacian operator, the potential function [Formula: see text] is continuous and [Formula: see text]. Here, [Formula: see text] is the Riesz potential of order [Formula: see text]. We study the existence of weak solutions for the problem above via the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2022
ISSN: ['1534-0392', '1553-5258']
DOI: https://doi.org/10.3934/cpaa.2022010